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This paper explores supply chain viability through empirical network-level analysis of supplier reachability 
under various scenarios. Specifically, this study investigates the effect of multi-tier random failures across 
different scales, as well as intelligent attacks on the global supply chain of medical equipment, an industry 
whose supply chain’s viability was put under a crucial test during the COVID-19 pandemic. The global 
supply chain data was mined and analyzed from about 45,000 firms with about 115,000 intertwined 
relationships spanning across 10 tiers of the backward supply chain of medical equipment. This complex 
supply chain network was analyzed at four scales, namely: firm, country-industry, industry, and country. 
A notable contribution of this study is the application of a supply chain tier optimization tool to identify 
the lowest tier of the supply chain that can provide adequate resolution for the study of the supply chain 
pattern in the medical equipment sector. We also developed data-driven-tools to identify the thresholds 
for the breakdown and fragmentation of the medical equipment supply chain when faced with random 
failures, or different intelligent attack scenarios. The novel network analysis tools utilized in the study can 
be applied to the study of supply chain reachability and viability in other industries. 
Keywords: supply chain network, medical equipment, multi-tier, multi-scale, disruption, random failure, 
intelligent attack, supply chain breakdown 
 
1. Introduction  
The global medical equipment supply chain network can be studied through different scales of network 
structure spanning across multiple tiers. Motivated by COVID-19, we assess the vulnerability of the 
medical equipment supply chain at the network-level (Ivanov and Dolgui, 2021) to various interruptions 
at the firm, industry, and country scales. The supply chain data on which this study relies consists of 
115,118 real relationships between 44,927 firms, with other scales of the network being computed from 
the firm-scale data.  To the best of our knowledge, the previous studies in this area have been conducted 
either using stochastic, synthetic (simulated) supply chain networks (c.f. Sen et al., 2020; Yang et al. 2021; 
Wang et al. 2018) or using relatively small local supply chain structures (c.f.; Hernandez and Pedroza-
Gutierrez, 2019, research on seafood market in Guadalajara, Mexico based on the study of 10 wholesalers, 
using a single tier). Considering that “synthetic networks” are constructed using “random network 
models” to represent a simulation of multi-tier supply chains (Yang et al. 2021) they can provide an 
opportunity for researchers to practice various scenarios in synthetic supply chain structures, assuming 
access to information about the supply chain.  

Despite the convenience of using simulated networks to study real-world constructs, these simulated 
networks come with restrictive assumptions and simplifications that limit the implications of the findings. 
For example, in an innovative study on supply chain resilience and restoration after a crisis using 
simulation data, Mao et al. (2020), assume that all firms in the supply chain will select the shortest path 
during restoration, which is not widely applicable to real-world supply chains. Additionally, data scientists 
using simulated models face various limitations, including credibility, scalability (Rampfl, 2013), reliability, 
accuracy, different algorithms’ characteristics, and generalizability of the findings (Cassens et al. 2005). 
The alternative to simulated data has traditionally been carefully curated, real-world data. The advantage 
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of this approach is that the topology is more realistic than in the random graph models, so the results may 
be more relevant. However, it is very difficult to collect enough real-world data to capture the multi-tier, 
multi-scale complexity of global supply chains, so in general, studies using real networks can suffer from 
serious missing data/boundary effects as well as a lack of understanding of how generalizable the 
conclusions are to broad industries. In contrast to such previous studies, the present study utilizes a novel 
data collection method to get a comprehensive picture of the entire real-world global supply chain among 
public firms. 
 
2. Literature Review 
Several contemporary events, including cyber-attacks, terrorism, and more recently, the COVID-19 
pandemic, have highlighted the fragility of the global supply chains. Researchers and policymakers have 
called for development of new solutions for designing and managing global supply chains that are better 
responsive to “the risk of disruption” (c.f. Sherkarian et al. 2020). The organizational supply chain's ability 
to manage the disruptions is of particular importance “in the time of crisis” for critical supplies such as 
medical equipment (Okeagu et al., 2021). Okeagu et al. (2021), in their study on the effect of COVID-19 in 
the U.S. medical system, call for better “transparency of where our raw materials are sourced, diversifying 
of our product resources, and improving our technology.” While companies do not voluntarily report their 
supply chain information, there are opportunities for data scientists to mine and analyze such data from 
the available data sources to explore the vulnerability of global supply chains to disruptions. “Disruptions 
are unexpected events occurring in a supply chain” (Wu et al., 2007) and are closely related to risk and 
uncertainties in the supply chain (Blackhurst and Wu, 2009). The supply chain’s abilities to manage 
uncertainties and disruptions has been widely studied using various metrics, including agility, robustness, 
vulnerability, flexibility, and adaptability, to name a few. Each metric corresponds to the supply chain’s 
ability to prevent disruption and/or recover from a disruption (Zegordi and Davarzani, 2012). Appendix 1 
displays the definition of these abilities.  

Supply chain abilities can enable the organization to continue operations despite various uncertainties 
and disruptions, be they short-term, long-term, minor, or significant. The COVID-19 “pandemic is 
characterized by a rapid spread” that affected not only supply and demand but also global logistics (Grida 
et al., 2020). The short-term effect of COVID-19 interruption has been observed in the daily life of society 
as well as in critical medical operations (Okeagu et al., 2021). Various export bans of medical equipment 
that went into effect in 2020 are examples of “protectionism in the pharmaceutical and medical supplies 
sectors” that put considerable short-term pressure on global supply chains (Stellinger, Berglund, and 
Isakson, 2020, pp: 23). In the long-term, businesses are expected to adapt to new patterns of production 
and trade, which stem from operational necessities as well as protectionist policies. “Dismantling the 
international supply chains, [and] reliance on domestic production” (Yacoub, and El-Zomor, 2020, pp:11) 
is a real possibility as a result of policies defined by “medical protectionism,” and “retreat from global 
supply chains” (Baldwin and Evenett, 2020, pp: viii) is expected. 

This study employs a network view of the global supply chain within the General Systems Theory. 
Network analysis is “an essential tool for studying system resilience” due to its capability “to capture 
relationships and dependencies between components” (Williams and Musolesi, 2016). Advances in data 
mining and big data computation, along with recent developments in “analysis of...spatial and temporal 
network[s],” have provided researchers with tools to conduct “more accurate” analysis of many real-
world network systems (Williams and Musolesi, 2016). Supply chain optimization practices (Haque, Paul, 
Sarker, and Essam, 2020) and globalization of markets and productions have made the global supply 
chains less centralized (Abele, Elzenheimer, Liebeck, Meyer, 2006; Mourtzis D., Doukas 2006). Advanced 
network models have proven capable of analyzing complex networks “even in completely decentralized 
architectures” (Trajanovski, Scellato, and Leontiadis, 2012).  



Mathematicians have widely used spatio-temporal systems analysis in a variety of fields for identifying 
weaknesses across connected networks; including social networks (Trajanovski, Scellato and Leontiadis, 
2012), transportation networks (Williams and Musolesi, 2016), and traffic flows (Shi, Yue, Zhou, 2019) just 
to name a few. Since the focus of this study is on a static global supply chain, we do not utilize a dynamic 
network analysis that tracks changes using a time variable. Such dynamic longitudinal studies can be a 
subject of future studies. As the supply chain of medical equipment has implications in the nations’ quality 
of life and national security, previous studies on infrastructure and military supply resiliency (c.f. Brown 
et al. 2005, Barrow 2019) have contributed to the better understanding of critical supply chains. Brown et 
al. (2005) argue that while commercial supply chains may not be generally considered as critical 
infrastructure, “they are certainly critical” to the “well-being” of a nation. Disturbances to the networked 
infrastructure may be caused by “random failure, deliberate attacks, and natural disasters” (Wang et al., 
2013). In this research, we simulate both the random failures (caused by unexpected events, e.g. inter 
alia natural disasters or a container ship gets stuck in Suez Canal) and the intelligent (targeted) attacks on 
the global supply chain of the medical equipment (e.g. inter alia terrorist attack, trade war/dispute, 
technological platform attack, or sanction) to explore how such ruptures can affect the critical medical 
supply firms.  Considering the complex and intertwined nature of the global supply chains, such analysis 
needs to be conducted across all notable tiers and units of analysis (scales) of the global supply chain. In 
this study, we will discuss how multiscale network data can be analyzed across different tiers of the supply 
chain to assess the reachability of suppliers in case of disruption. 
 
3. Research Methodology 
In their well-cited paper on supply chain disruption, Wu et al. (2007) discuss the intertwined global supply 
chain of products and services. Network-based modeling and analysis have been a recommended 
“methodology for supply chain distortion analysis” that addresses the complex, multi-tier, nonlinear, 
global, and dynamic characteristics of organizational supply chains (Wu et al. 2007). In arguably one of 
the most targeted and comprehensive investigations in the supply chain literature about “disruption 
propagation and structural dynamics,” Ivanov and Dolgui (2021) argue that this area has been explored 
using three categories of methodological tools, namely, network and complexity theory, mathematical 
optimization, and simulation studies. The present work can be best classified a network and complexity 
theory where supply chain analysis is conducted on the “macro view of the supply chain structure” and 
“operational parameters” are not the subject of the research (Ivanov and Dolgui, 2021).  

In the following, some of the network-based methods to study supply chain disruptions are discussed 
along with their application in the present study. The research methodology is influenced by the research 
goal as well as the characteristics of data. We discuss how our network disruption analysis methodology 
incorporates previous research methods to be compatible with our data’s structure.The application of 
Petri-nets has been discussed in the literature as a method for analyzing disruption risk and uncertainly in 
complex global supply chain networks. The Petri-net mathematical modeling language is useful to 
understand how a disruption can be disseminated throughout the supply chain and affect operational 
performance (Zegordi and Davarzani, 2012). While previous works are conducted to understand supply 
chain disruptions on the basis of the risk probability, the Petri-net modeling does not require the 
availability of such probability distributions, which are usually constructed based on past experiences 
(Zegordi and Davarzani, 2012). This characteristic of Petri-net modeling is a supporting argument for the 
use of Petri nets, and similar network analysis approaches in exploring supply chain disruptions for events 
for which we do not have probability estimates, such as the COVID-19 pandemic. Petri-net models have 
been utilized by firms with access to detailed product information, including the bill of materials and 
production process of their products/service. While such information is not available at the global supply 
chain scale, we adopt the “reachability” analysis approach used in Petri-net modeling across the network 
(Wu et al. 2007, Zegordi and Davarzani, 2012; Fierro and Garcia, 2020). “Reachability” is the basis of our 



supply chain disruption analysis. In this paper, we explore how the firms’ access (or reach) to their multi-
tier supply chain is affected when an interruption or a series of interruptions occurs across the global 
supply chain of medical equipment. 

Sauer and Seuring (2019), in their study on multi-tier supply chain reach, propose a cascaded 
approach. Supply chain cascading analysis has been widely used to analyze disruptions in the context of 
computer network architecture (c.f. Potts et al. 2020), computer network security (c.f. Yan et al., 2014), 
infrastructure networks such as power-grids (c.f. Ash and Newth, 2007; Guo et al., 2019), and traffic 
networks (c.f. Li et al. 2019). Cascading failure in these studies is usually caused by the overload of the 
network, which is not frequently applied to supply chain failure analysis. In a recent study, Yang et al. 
(2021) utilized the cascade failure method to study supply chain robustness. They argue that “when a 
node is disrupted, its downstream and upstream neighbors will be affected due to supply shortage and 
demand losses, respectively.” From this perspective, both underload and overload can negatively affect 
the supply chain robustness through not only inventory but also the cost (Sun et al. 2020). For example, 
in the case of an underload, the supply chain may be disrupted due to unfavorable economies of scale in 
backward or forward tiers of the supply chain. In general, the disruptions to the supply chain can be 
intelligent (or targeted) attacks or random failures (Sun et al. 2020). Therefore to explore the vulnerability 
of the supply chains to disruptions, researchers should explore random failures as well as intelligent 
disruptions that may occur using scenario simulations. In our research methodology, we will conduct both 
random failure analysis and intelligent attacks analysis. 

In this study, following the previous outline of scholarly research, we utilize reachability analysis 
similar to the Petri-net models and conduct failure analysis across multiple tiers of the supply chain as 
described in cascading failure models. There have been limited previous studies using the supply chain 
reachability method to the best of our knowledge, and no research has been conducted using such 
methodologies on real-world, large-scale supply chain data. The limited number of previous studies that 
utilized similar methods have explored other aspects of the supply chain, such as supply chain 
sustainability analysis in small scales or using stochastic methods (c.f. Kumar and Rahman, 2017; Bommel, 
2010). In this study, the global supply chain reachability will be conducted in the presence of random 
failure and intelligent attacks using real-world supply chain data. In the following, we discuss our approach 
in conducting intelligent attacks and random failure analyses across multiple tiers and scales of the global 
supply chain of medical equipment.  
 
4. Data Collection 
While scholars have called for transparency with regards to supply chains of critical products and services 
such as medical equipment (Okeagu et al. 2021), companies do not voluntarily publish such information 
because it is of strategic importance to their competitiveness. However, according to the Securities and 
Exchange Commission (SEC) and Statement of Financial Accounting Standards (SFAS), publicly traded firms 
are mandated to report their notable customers and suppliers, among other information. Item 101 (17 
CFR 229.101) of the SEC requires firms to report their business description. As a part of item 101 and SFAS 
No. 131 requirements, corporations registered with SEC are required to disclose information about the 
suppliers and customers that “accounted for 10 percent or more of consolidated” revenue/cost “in any of 
the last three fiscal years, or if total revenue did not exceed $50,000,000 during any of those three fiscal 
years, 15 percent or more of consolidated revenue” or cost (SEC, 33-7620). We refer to these firms as 
“notable” customers and suppliers. This legal requirement provides data scientists an opportunity to gain 
access to notable global supply chain data. To the best of our knowledge, this is the most comprehensive 
large-scale feasibly and legally available supply chain data. The supply chain data for this research is 



prepared and provided by the XXX Data Science Lab2. A schematic map of the first 5 tiers of this data is 
presented in Figure 1. 
 

 
Figure 1. Network Data Structure: Tier-by-Tier Data Collection. 

 
MSF: Medical Supply Firms (MSF).  Blacked out nodes are Terminal Suppliers (TS)                                        Shaded area represents a loop. 

 

 
As a simplification, Figure 1 presents each tier as disjoint. In reality, our supply chain network is 

nonlinear, and many firms are present across multiple tiers. Medical Supply Firms (MSF) which are 
wholesale and distributors of medical equipment, are the starting point of data collection. Terminal 
Supplier (TS) are firms in the supply chain for which we don’t know of any higher-tier dependencies, and 
they are identified in Figure 1 by blacked-out nodes. These TSs are not necessarily in the last tier, as lower-
tier firms are not guaranteed to report any notable suppliers in higher tiers, or there may be firms that 
are active in more than one tier. The supply chain network includes numerous cycles and self-loops.  An 
example of a supply chain loop is presented in Figure 1, where the shaded area identifies the supply chain 
loop members. In the case of the supply chain loops that include a TS, all members of the loops are 
identified as TSs due to their supply chain dependencies. In the analysis section, we have provided the 
analytical justification for our choice to collect ten tiers of data. 

The data collection's starting point is all of companies listed in the SNL Financial, S&P Capital I.Q., and 
Compustat under the Standard Industry Classification (SIC) 5047, which was 324 firms at the time of data 
collection. SIC-5047 represents companies in the Medical, Dental, and Hospital Equipment and Supplies 
sector. The information about notable suppliers of 267 MSF firms was available to be mined. Ten rounds 
of data mining and preparation were performed to construct the 10-tier supply chain network. The 
network was constructed from 115,118 real relationships between 44,927 firms. We could not identify 
the primary industry identification for close to one third of the firms. To address this issue, industry 
classifications were randomly assigned to the missing data based on the proportion of representation of 
each industry in the sample, with this random assignment being re-done in each repeated experiment to 
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understand any possible variation in outcomes. Appendix 2 illustrates the distribution of the suppliers as 
well as the number of new firms we mined at each round of data collection. The data was initially collected 
at the firm-scale. Using the firm-scale data, we constructed the same supply chain network at the industry 
scale, country scale, and country-industry scale. The industry-scale and country-scale supply chain 
networks are self-explanatory. To generate the country-industry supply chain network, we differentiated 
each firm’s industry by the country where it’s headquarters is located, following Lavassani's (2017) 
proposed multi-scale network analysis approach. 
 
5. Data Analysis 
As disruptions may occur at the firm scale, country scale, country-industry scale, or industry scale, it is 
imperative that businesses and policymakers have the capability to understand and analyze disruptions 
at all scales. As described in the data collection section, we have constructed the supply chain networks 
at four scales (firm, industry, country-industry, and country) across ten tiers. The multi-scale analysis 
approach is employed to provide the opportunity to analyze disruptions that can happen at different 
scales. For example, consider global sanctions placed on a particular industry in a specific country; in this 
case, the country-industry-scale would be a suitable analysis scale.  

Before conducting disruption experiments caused by random and intelligent events, we utilize a tier 
count optimization tool to identify the most efficient supply chain network depth to analyze. This supply 
chain depth optimization tool has notable application in the validity analysis of supply chain network data 
collection and efficiency of future studies.  Our data collection optimization tool is based on the 
application of ideas from mathematical analysis and convergence theory, which are widely applied 
throughout the simulation sciences, particularly mathematical physics. (c.f., Scott 2011, chs 12-13 for 
introductory material.)  

In this study we utilize different random failure and intelligent attack methodologies which are 
commonly used to study complex networks in the fields of mathematics physics, and system resiliency 
(c.f. Liu et al. 2005; Magnien et al. 2011; Yamashita et al., 2019; Sičanica and Vujaklija, 2020). To analyze 
the effect of disruptions, we conducted Random Failure Experiments (RFE) and Intelligent Attack 
Experiments (IAE) of the global supply chain across different tiers and scales. The RFEs and employee-
based IAEs are performed using 100 realizations. Due to missing industry categorization for some firms, 
we also repeat the industry-level PageRank-based experiments 24 times, each with a different imputation 
of the missing industry values, drawn with replacement from the distribution of industries that are known. 
We also plot the percentile intervals of valuations from random and randomized attacks, from the 2.5th 
percentile to the 97.5th percentile. The results are further discussed in the following section. 

For conducting the IAE, we need to define target attack criteria. The centrality of network actors is a 
natural selection in the context of the network analysis. We selected PageRank centrality with respect to 
the network and its transpose as reasonable proxies for importance with respect to upstream and 
downstream firms, respectively. That is, under PageRank with/without transpose, the most central firms 
are those most relied on by their suppliers/customers, respectively. We looked for other available 
moderating factors that could affect firms' influence in the supply chain network. We could collect the 
number of employees for 95% of firms in our supply chain network. In the absence of edge weights, the 
number of employees is a meaningful measure of a firm’s size and influence in the supply chain network. 
Centrality and the number of employees are used as criteria to launch IAEs. To measure the consequence 
of RFA and IAE on the global supply chain, we measured the average percentage of TSs Reachable (ATSR) 
as well as whether at least one TS was reachable (Some Terminal Suppliers Reachable, or STSR), averaged 
across MSFs.  

Centralities are calculated at the firm-scale. The centralities at other scales were calculated based on 
the aggregation of centralities of the firm-scale. The location of the firms are identified by their country 
of headquarter. Industries are classified based on each firm’s primary SIC code. Disruption investigations 



are conducted using the above-mentioned classification. For example, when we remove an industry on 
the basis of RFA or IAE, all firms classified within that SIC code get eliminated from the supply chain 
network. Finally, we present two data-driven approaches to identify the threshold of disruption that may 
lead to breakdown and fragmentation of the global supply chain for medical equipment. The data analysis 
is presented in six subsections, namely, supply chain tier, firm scale, industry scale, country-industry scale, 
country scale and supply chain breakdown and fragmentation. 
 
5.1 Supply Chain Tiers Analysis 
The decision about selecting the number of tiers is data-driven. The supply chain data is collected tier by 
tier, and due to the nature of the supply chain network, the data can be collected virtually across an 
unlimited number of tiers. However, due to the large size of the data and computational limitations, a 
data scientist should identify the optimal number of tiers that best represent the structure of the global 
supply chain pattern. This issue is crucial since as we expand data collection from one tier to the next, the 
number of firms in each supply chain tier may grow exponentially. This exponential growth is expected to 
slow down at some point as there is a finite number of firms. Our analysis across different scales provides 
mathematical evidence for the appropriate number of tiers that can best represent the supply chain 
pattern for each type of analysis (i.e., random failures vs. intelligent attacks) and each scale of analysis 
(e.g., firm- vs. country-scale). Figure 2 displays the result of RFA and IAE across the four scales of analysis. 
IAEs are conducted based on firms size (employee count), PageRank, and transposed PageRank.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 2. RFA & IAE Across Multiple Tiers of Supply Chain. 
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X: One minus the Supply Chain Failure Rate (SCFR) 
Y: Average Percent of Terminal Suppliers Reachable (ATSR) 
In the random/randomized failure analysis: Realizations= 24-100. 
Shading represents the range from the bottom 2.5th percentile to the top 97.5th percentile interval over realizations. 
 
 
 
 



The Y-axes in Figure 2 represent the average percentage of the end suppliers which are reachable (where 
the average is taken across MSFs); this statistic is equal to one minus Supply Chain Failure Rate (SCFR). 
The X-axes indicate the percent of remaining operating firms, representing the percentage of firms that 
are still in business under the RFE and IAE. 

Our analysis demonstrates that the SCFRs across different tiers in the medical equipment industry 
have high correlations. The shaded areas capture 95% of the data spread across random realizations of 
firm failure order and/or industry/employee count imputation where needed. Such imputations were 
made by drawing randomly from the distribution of employee counts and industries which were known. 
This shaded area shows the range of probable disruption variation when the supply chain experiences 
random failure.  Each of the RFEs or IAEs in Figure 2 displays where the network reaches convergence.  To 
have a reasonably appropriate estimation of the supply chain structure, researchers need to collect data 
from appropriate number of tiers of supply chain. To identify the tier in which the network converges we 
use uniform convergence of the mean as a function of percent firms remaining. We subtracted the mean 
ATSR curve with 10 tiers from the one with fewer tiers and take the absolute value. The largest value of 
the resulting function is then the uniform distance. Starting with one tier and adding tiers until the uniform 
distance is small enough (5% in our tests) we identified how many tiers are needed for convergence. Based 
on the analysis of each disruption across different scales of supply chain, we recommend a minimum 
number of supply chain tiers to be analyzed for each disruption scenario as displayed in Table 1.  
 
Table 1. Disruption scenarios and minimum recommended supply chain tiers to be analyzed. 

          Failure/Attack
                         mode

 
        Unit 

RFA IAE 
Random PageRank of 

transpose 
PageRank  Employee 

Firm 4 8 7 6 
Country-Industry 3 5 6 4 

Industry 5 8 8 7 
Country 4 4 7 6 

 
According to our analysis, for the purpose of RFA analysis at the firm-scale, we need to collect data from 
at least four supply chain tiers. In this scenario, the supply chain's reachability pattern stabilizes after the 
4th tier; we call this the convergence tier count. Including higher tiers of the supply chain in this scenario 
marginally enhances the network's resolution of the supply chain pattern. Another example we discuss 
here is the IAE based on employee count at the firm-scale; in this scenario, six tiers provide evidence that 
required supply chain information is collected to have a converged supply chain pattern for further 
research. 

In addition to the findings about the recommended number of tiers that need to be analyzed, we also 
identified several interesting patterns of supply chain disruptions. One of the interesting observations is 
related to the case of industry-scale PageRank IAE. In this case, we recommend using at least eight tiers 
to obtain the best supply chain failure pattern depending on the scale of attack.  Six to seven tiers in this 
scenario would be sufficient for attacks that take out up to approximately 10% of industries; however, for 
attacks that affect more than the 10% threshold, our analysis suggests collecting data from at least eight 
tiers. Based on the pattern of failure at this scale of analysis (Figure 2), it is expected that should data be 
collected from higher tiers, the supply chain may show more robustness and continue to show a stepped-
down pattern of catastrophic failure when the percentage of ‘firms remaining’ continues to decrease 
beyond 0.8. In other words, an analysis with fewer tiers may overemphasize how fragile the supply chain 
is to this type of targeted attack. Another interesting finding based on the analysis of the pattern of supply 
chain disruptions across different tiers can be observed in the result of RFA at the country scale and the 
industry scale. The dark shaded areas representing the bottom 2.5th percentile shown below the mean 



reachability curves display the possibility of a catastrophic disruption with a relatively small elimination of 
units. For example, a 5% disruption at the industry-scale or at the country-scale can potentially cause 80% 
of MSFs TSs to become unreachable.  

If we consider 20% reachability of TSs from MSFs as a “catastrophic” supply chain failure, we expect 
this threshold would not be reached unless at least 30% of industries or countries are eliminated from the 
global supply chain of medical equipment. However, our IAE analyses indicate that should a few (appx. 
5%) of the notable industries or countries be eliminated from network, we can reach a catastrophic supply 
chain failure at a much earlier stage. The RFA analysis at the industry scale and the country scale reveals 
another interesting characteristic. In RFA at the industry scale and country scale, as we collect and analyze 
supply chain data from higher tiers, the likelihood of higher TSs’ reachability (shaded area above the 
curves) decreases, however, the likelihood of catastrophic failure (shaded area under the curves) does 
not decreases notably. We started by conducting our analysis using 5 tiers and gradually increased our 
data collection to 10 tiers. At the 10th tier, we had supportive evidence that the data is collected from 
appropriate tiers of the supply chain to conduct more detailed analyses at different scales. We will discuss 
these analyses in the following sections. 

 
5.2 Firm-scale Supply Chain: RFA and IAE Analysis 
Figure 3 displays the RFA and IAE analysis of the global supply chain of medical equipment at the firm-
scale. The RFA is conducted using 24 realization and visualized with a shaded area encompassing 95% of 
the observed values of Average percent of TSs reachable (ATSR). To better focus on the data ranges where 
notable changes occur, the analysis is presented at 0.3-1.0 and 0.9-1.0 remaining firms ranges. We have 
plotted the ATSR and the percent of MSFs with Some TSs being reachable (STSR) when the supply chain is 
faced with random failure or various intelligent attacks. Conducing analysis using ATSR and STSR provides 
further insight for business strategists. In scenarios where interruptions are short term, MSFs have buffer 
inventory for some inputs (e.g. parts), there exist substitute inputs, and/or MSFs can source some inputs 
from other suppliers, the STSR can be a better measure of MSFs’ supply chain operability.  ATSR arguably 
could be a better benchmark for assessing the MSFs’ supply chain operability in scenarios where these 
conditions do not apply. 
 
Figure 3. Firm-scale RFA & IAE of the global medical equipment supply chain. 

 Remaining units range: 0.3-1.0 Remaining units range: 0.9-1.0 
 Avg. % TS Reachable Some TS Reachable Avg. % TS Reachable Some TS Reachable 

Firm
 

 
 
The results indicate the effectiveness of each form of disruption on the global supply chain. Overall we 
have supportive evidences that the most effective disruption can be caused by an intelligent attack which 
is based on the centrality of the firms in global supply chain. Intelligent attacks targeting lower-tier central 
suppliers (PageRank) is found to be more effective in disrupting supply chains than targeting higher-tier 
central suppliers (PageRank of the transposed network).  Also, random failures are found to be the least 



effective in disrupting the supply chain. Finally, intelligent attacks based on firm’s size (as measured by 
the number of employees) are found to have a similar effect as a random failure on STSR. 
It is noteworthy to mention that the distance between the percentage of firms remaining (purple line) 
and various failure/attack scenarios is attributed to the network effect stemming from supply chain 
dependencies. We can observe when and to what extend these dependencies affect ATSR and STSR. For 
example in the STSR graphs (Figure 3) we can observe that the network effects of random failure  and 
intelligent attacks are modest in the >95% firms remaining range; however, failures  that affect more that 
10% of firms will cause notably larger disruptions. In the case of ATSR the network effects of disruptions 
are larger and earlier. 

 
5.3 Country-Industry-scale Supply Chain: RFA and IAE Analysis 
Figure 4 presents the analyses at the country-industry scale. In the ATSR analyses, different intelligent 
attack methods produce very similar scales of disruptions even it the 0.9-1.0 range. Similarities can be 
observed in STSR analyses as well; however, the PageRank-based attacks and transposed PageRank 
attacks are marginally more effective than size-based attacks.  
 
 
Figure 4. Country-Industry-scale RFA & IAE of the global medical equipment supply chain. 
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5.4 Industry-scale Supply Chain: RFA and IAE Analysis 
The industry-scale analysis measures the impact of random or targeted elimination of an industry. The 
two centrality-based attacks almost produce identical effects on ATSR and STSR. This implies that attacks 
targeting higher influential tiers or lower inferential tiers at the industry-scale are expected to result in 
the same scale of interruptions. It is notable to mention that the supply chain shows notable resiliency in 
centrality-based industry attacks under STSR scenarios within a certain attack range. Specifically, we can 
expect over 80% of TSs to stay reachable when approximately 15% of the industries are eliminated. In this 
scenario, the random attack has a reasonable probability of causing more devastating supply chain 
disruption as identified by the shaded area reaching below intelligent attack curves (at certain ranges of 
remaining industries).  
 
 
 
 
Figure 5. Industry-scale RFA & IAE of the global medical equipment supply chain. 
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5.5. Country-scale Supply Chain: RFA and IAE Analysis 
Our analysis across different scales reveals that as we move from firm-scale and country-industry-scale 
analysis to industry-scale and country-scale analysis, the variability of interruption resulting from random 
failures increases. This issue can be observed by comparing the shaded areas between the 97.5 and 2.5 
percentile of outcomes. According to this, the firm-scale analysis result has the lowest uncertainty. Figure 
6 displays the result of the analyses conducted at the country scale. 
 
Figure 6. Country-scale RFA & IAE of the global medical equipment supply chain. 
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Our analysis shows the important role of some major countries like the U.S., China, and a few other 
countries whose elimination can create significant disruption to the global supply chain. This issue can be 
observed in the IAEs of all scenarios in Figure 6. When the first major country is eliminated based on any 
of the IAEs, we can observe that the reachability of intelligent attacks starts to drop to approximately 25% 
for ATSR and 60% for STSR.  
 
5.6. Supply Chain Breakdown and Fragmentation. 
Another interesting finding of this study is with regards to the threshold of global supply chain breakdown 
or fragmentation at different scales. To the best of our knowledge and as reported in the literature (c.f. 
Wang et al. 2018) “there is no threshold” that can determine what scale of interruption will result in the 
complete breakdown of global supply chain operations.  
 
 Supply Chain Breakdown  
Based on our global medical equipment models, the breakdown thresholds can be estimated from RFA 
and IAE results (Figures 3, 4, 5 and 6). Table 2 summarizes the thresholds based on the supply chain 
breakdown where the "breakdown threshold" is defined here as the largest value of percent firms 



remaining at which ATSR was less than 20% or 1%. Depending on the researchers’ needs other limits may 
be utilized using the same methodology. (Lee et al., 2019, Rapisardi et al., 2018). 
 
 
Table 2.  Supply chain breakdown threshold of global medical equipment. 
 

  Supply Chain Breakdown Threshold 

Failure/Attack  
Type 

Scale 
20% limit 1% limit 

remaining affected remaining affected 

Ra
nd

om
 Firm 0.73 0.27 0.42 0.58 

Country-industry 0.72 0.28 0.41 0.59 

Industry 0.71 0.29 0.38 0.62 

Country 0.60 0.40 0.29 0.71 

Pa
ge

Ra
nk

 
of

 
tr

an
sp

os
e Firm 0.934 0.0766 0.84 0.16 

Country-industry 0.983 0.017 0.91 0.094 

Industry 0.88 0.12 0.66 0.34 

Country 0.988 0.012 0.94 0.063 

Pa
ge

Ra
nk

 Firm 0.967 0.033 0.91 0.095 

Country-industry 0.987 0.013 0.90 0.096 

Industry 0.88 0.12 0.76 0.24 

Country 0.988 0.012 0.94 0.063 

Em
pl

oy
ee

s Firm 0.89 0.11 0.77 0.23 

Country-industry 0.978 0.022 0.92 0.084 

Industry 0.87 0.13 0.70 0.3 

Country 0.988 0.012 0.94 0.063 
 
As illustrated in Table 2, the supply chain breakdown thresholds are dependent on the type of disruption, 
scale of analysis, and desired breakdown limit values (here calculated based on 20% limit and 1% limit). 
For example when only 27% of the firms are affected by a random failure, the ATSR of the global supply 
chain for MSFs falls down to 20%. If the breakdown limit is defined at the 1% limit, the breakdown can be 
achieved when 58% of firms are randomly affected. 

Overall the intelligent attacks are found to be notably more efficient in achieving supply chain 
breakdown limits. For example a country-industry PageRank-based attack can achieve the supply chain 
breakdown limit of 20% by targeting merely 1.3% of country-industries, while achieving the same level of 
supply damage through random failure calls for 28% of country-industries to be eliminated from the global 
supply chain. The comparison of PageRank and PageRank of transpose also provides interesting results. 
The attacks at the more macro-scales (industry-scale and country-scale) have the same level of efficiency 
in both types of attacks. However, PageRank is found to be marginally more effective in attacks at the firm 
and country-industry-scale. While PageRank provides more weight on the importance of lower tier 
suppliers, from the perspective of PageRank of transpose, higher tier suppliers are viewed to be more 
important. According to this result eliminating lower tier suppliers is more efficient in achieving supply 
chain breakdown limits than eliminating higher-tier suppliers. While this result applied to the sample of 
medical equipment global supply chains, in other industries the supply chain breakdown thresholds may 
exhibit different patterns.In the absence of a threshold that can determine the breakdown of supply 



chains we provided a solution to identify thresholds based on the defined breakdown limits.  These limits 
can be determined by scholars and practitioners considering their needs.  
 

Supply Chain Fragmentation 
In addition to the above mentioned methods we also introduce and utilize a fragmentation threshold 
identification methodology from the field of graph theory based on the Erdős–Rényi (ER) model (Erdős 
and Rényi, 1959).  The reachability statistics used in this paper are tailored to the case of supply chains, 
but they do bear a superficial similarity to more classical “network robustness” analyses that have roots 
in percolation theory (c.f. Bunde and Havlin 1996). In such analyses, undirected graphs are generally 
assumed to have been drawn from a random graph model, and the goal is to determine, in the limit of 
infinitely large graphs, what proportion of nodes must be removed either randomly or in a targeted 
manner, in order to break up the graph into many connected components. Classical percolation theory 
does not apply to undirected graphs, nor is our preceding analysis meant to imply anything about whether 
the supply chain consists of multiple connected components. To visualize the difference, we imagine the 
supply chain laid out in tiers, with each tier occupying a single layer (See Figure 7).  

 
Figure 7. Supply Chain network segmentation across tiers. 

 
 
 
If we cut (disconnect) the supply chain horizontally, all our reachability statistics are zero, but the network 
only contains two giant components. Conversely, if the chain is sliced vertically several times, our 
reachability statistics can be quite high, even though the supply chain is broken into many pieces. Indeed, 
the vertical slicing does correspond to competing business ecosystems which supply among themselves 
but not with each other, which is a feature of modern supply chains. Nonetheless, due to the prominence 
of percolation theoretical approaches to network robustness, it is interesting to compare our results with 
what might be obtained using more classical tools. We limit ourselves to the four most popular analyses: 
Erdos-Renyi (ER, uniformly random) vs. power law graphs and random vs. (degree) targeted attacks. Note 
that random and targeted attacks are approximately equally effective for ER graphs. 
 

In graph theory, the network robustness is measured by assessing “the impact of node failure on 
the integrity of a network” (Barabási , 1999). This method is widely utilized in statistical physics and 
mathematics within the context of percolation theory (c.f. Bunde and Havlin 1996 , Zheng et al. 2021). 
Based on percolation theory principals we explore the change in the structure of the network when nodes 
or edges are removed from the network. We start removing the supply chain nodes until the average 



degree of each node is less than 1 (corresponding to the ER robustness limit). We use the ER’s 
connectedness threshold to identify the critical threshold of network fragmentation. In this study we refer 
to this network fragmentation as supply chain fragmentation. The result of this analysis is presented in 
Table 3COLAP. 
 
 
Table 3.  Supply chain fragmentation threshold of global medical equipment. 
 

  Supply Chain Fragmentation Threshold 

 
Scale 

Avg. node degree <1 
Remaining Affected 

Ra
nd

om
 

fa
ilu

re
 Firm 0.21 0.79 

Country-industry 0.19 0.81 

Industry 0.02 0.98 

Country 0.01 0.99 
 

We define the supply chain fragmentation as the situation where the supply chain network is broken 
into disconnected components, identified by the average degree falling below 1. Albert, Jeong, and 
Barabasi (2000), in their work “Error and attack tolerance of complex networks” explain that for ER 
networks, targeted and random failures are about equally effective at fragmenting the network. The result 
from Table 3 shows that the robustness of the supply chain network measured using the ER model varies 
across different scales. The primary reason for this behavior is that, as we move our scale from firm and 
country-industry and from industry and country the random failures will have lower probability of 
eliminating highly central nodes. The supply chain of medical equipment includes a relatively small 
number of extremely well connected nodes and hence exhibits a highly skewed degree distribution.  This 
characteristic makes this supply chain particularly robust to various types of disruptions. 
 

In the case of power law networks, we use the Molly-Reed criterion and an estimate of 1.4 for the 
power law exponent (obtained using the powerlaw python package). Thus, for random attacks all but .8% 
of firms must be deleted in order to break up the network. In the targeted case, the theory predicts that 
arbitrarily small attacks should break up the network. This is broadly consistent with the extreme observed 
efficacy of targeted attacks on the real network, which is expected, since the actual degree distribution is 
quite heavy-tailed. 
 
6. Discussion 
Ivanov and Dolgui (2020), as some of the seminal scholars in the field, promoted the study of viability 
analysis based on the intertwined network of supply chains. Ivanov and Dolgui (2020) highlighted the 
different behaviors of intertwined supply chain networks versus the traditional linear supply chains. As 
we identified in the complex network of about 150,000 supply chain connections, there exist numerous 
supply chain loops. As we expanded mining supply chain data tier by tier, we also identified numerous 
lower tier suppliers become suppliers to the higher tier firms. These firms create intertwined value co-
creation business ecosystems forming what Dolgui, Ivanov and Sokolov (2020) refer to as “value webs”.  

Overall, the global supply chain network of medical equipment exhibits high vulnerability exhibited 
by a sharp decrease in TSs reachable to MSFs when the supply chain is faced with disruptions. The high 
scale of vulnerability is due to the very few alternative routes from higher-tier suppliers to the MSFs. The 
reason for such a vulnerable network structure is twofold. On the one hand, the medical equipment supply 
chain requires incorporating a high scale of service (Maltz and Maltz, 1998) due to its final products' 



complexity and sensitive nature. This factor limits the flexibility of MSFs to maintain costly supplier 
relationships with multiple suppliers simultaneously. On the other hand, over the past few decades, 
efficiency goals (NASEM, 2018; Jha, 2019) have “forced” (Denton and Jaska 2014) MSFs to adopt creative 
efficiency practices and strategies including “pull,” “push,” “just-in-time (JIT),” “economies of scale” and 
“off-shoring.”  

The result of this study reveals that disruption in a small number of suppliers across any of the 
analyzed tiers can have a devastating effect on the supply of medical equipment. In such a business 
environment, one of the key questions facing supply chain managers is how many tiers of the supply chain 
need to be analyzed to obtain enough information about the structure of the supply chain? We provided 
a data-driven method that identified the minimum number of tiers to be analyzed to acquire such 
information.   We recommend practitioners establish integration strategies across their supply tiers that 
includes the convergence tier of the relevant threat model.   

The analysis of the effects of disruptions in this paper is primarily based on ATSR and STSR. However, 
it is noteworthy to mention that we also computed the percent of MSFs with All Terminal Suppliers 
Reachable (ALTSR). Through our experiments, we observed that ALTSR drops to zero with high probability 
almost immediately because each MSF depends on thousands of firms. This exhibits one of the limitations 
of the study, as in real-world operations, firms usually carry buffer inventories and hence may be able to 
identify alternative suppliers across different tiers. Nevertheless, such extreme experiments can provide 
beneficial information to identify critical supply paths, considering the high dependencies in the medical 
equipment's global supply chain. In addition to supply chain tier analysis and random vs. intelligent 
disruptions, we also provided a novel approach to measure and illustrate the thresholds of supply chain 
breakdown and fragmentation. 

Another contribution of this work is its application in the validation of future simulation algorithms. 
Our analysis provides benchmark supply chain patterns of behavior to be used in future simulation 
algorithms to produce more accurate “in silico” models that can better “mimic real data” (De Smet and 
Marchal, 2010). The findings and methodologies utilized in this study has notable implications for policy 
makers working on commerce, national security and public health. We illustrate tools to identify central 
supply chain nodes across multiple tiers of supply and highlighted the vulnerability of supply chain to 
various disruptions. Also, relying on multiple MSFs does not necessarily diversify the risk as many MSFs 
share some supply pathways across multiple tiers of backward supply chain. These are some of the topics 
that policy makers can strategically explore using such networks analytics models. 
 
 
 
7. Limitation and Directions for Future Studies 
Some of the constraints of this study are related to our data. Our supply chain data includes only the 
notable suppliers as defined in the paper, and furthermore, the monetary value of supply chain 
relationships is not available. Another limitation of our supply chain network is that since the data is 
primarily mined from financial records of the publically traded firms the supply chain network does not 
include smaller private firms that do not have notable supply chain connections with the publically traded 
firms.  

Despite these limitations, to the best of our knowledge, this is the most comprehensive real-world 
global supply chain data that can be legally collected within current business practices and legal 
frameworks. Since we tried to use the most efficient algorithms, we did not face significant computational 
challenges that may arise from the data's size and complexity. While we could analyze the data across ten 
tiers for this industry using high-performance personal computers, we recommend researchers to 
consider using cloud computing for analyzing larger networks. 



The present study explored the backward supply chain. Future studies in the area are encouraged 
to conduct forward supply chains. The study of supply chains across multiple tiers and scales can be 
conducted at the network level, the process level and the control level (Ivanov and Dolgui, 2021). Since 
the focus of this study has been on the network-level, the operational parameters have not been 
considered in the analysis. While this poses limitations for the implications of the work there are fruitful 
opportunities for expanding the resent work to explore the relationship among the three levels proposed 
by Ivanov and Dolgui (2021). 

While the current research focuses on analyzing nodes, we believe there are fruitful research 
opportunities in conducting clustering analysis based on community detection algorithms. Future studies 
are encouraged to explore supply chains' vulnerability when a cluster of firms is affected or when central 
firms across different communities are affected. Furthermore, this study is based on the analysis of the 
supply chain networks. Future studies can explore the global supply chains using multi-layer connected 
networks of business ecosystems.  
It this study we proposed analytical tools to identify the survival of firms based on access to average or 
some suppliers. In future studies we plan to identify the firms that survived some level of failure or attacks. 
We are interested to explore various characteristics of this firms to identify potential supply chain, firm 
specific and/or industry-specific characteristics that can contribute to higher probability of enduring such 
events.   

While most studies in this domain explore the effect of disruption, there has been a gap in the 
literature on exploring post-disruption supply chain management (Ivanov, 2021). The research 
methodologies employed in this paper are compatible with additions to simulate random as well as 
intelligent recovery. We plan to conduct such studies in the future with the goal of identifying the 
optimized recovery paths. 
 
Acknowledgments: 
- [To protect the anonymity of the blind review process, acknowledgment of the Federal & State funding 
government/organization will be added later] 
- [To protect the anonymity of the blind review process, acknowledgment of the non-co-author 
contributor to this work will be added later.] 
-  The first and second authors contributed equally. 
 
Supplementary file: 
Python codes included as supplementary material 
 
References 
Abele E., Elzenheimer J., Liebeck T., Meyer T. 2006. “Globalization and Decentralization of 

Manufacturing.” In: Dashchenko A.I. (eds) Reconfigurable Manufacturing Systems and 
Transformable Factories. Springer, Berlin, Heidelberg. 

Albert, R., Jeong, H. & Barabási, AL. Error and attack tolerance of complex networks. Nature 406: 378–
382 (2000). https://doi.org/10.1038/35019019 

Ash, J. and Newth D. 2007. “Optimizing complex networks for resilience against cascading failure.” 
Physica A: Statistical Mechanics and its Applications 380(1): 673-683. 

Barabási, A.L. 1999. “Network Science.” http://networksciencebook.com/, Last Accessed 4/10/2021. 
Barrow H.J. 2019. “NETWORK SHAPING.” Master of Science in Operations Research, Naval Postgraduate 

School. URL https://apps.dtic.mil/dtic/tr/fulltext/u2/1080001.pdf  [Last accessed 11/05/2020] 
Baz E.E., and Ruel S. 2021. “Can supply chain risk management practices mitigate the disruption impacts 

on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 
outbreak era.” International Journal of Production Economics 223: 107972. 



Blackhurst, J. and Wu T., 2009. “Book Introduction.” In (Eds.) T. Wu and J. Blackhurst, Managing supply 
chain risk and vulnerability: Tools and methods for supply chain decision makers, Springer, 
London.  

Bommel, W.V. 2010. “A conceptual framework for analyzing sustainability strategies in industrial supply 
networks from an innovation perspective.” Journal of Cleaner Production 19(8), pp. 895-904. 

Brown G.G., Carlyle W.M., Salmeron J. and Wood K. 2005. “Analyzing the Vulnerability of Critical 
Infrastructure to Attack and Planning Defenses” Tutorials in Operations Research: 102-123. 

Bunde, A. & Havlin, S. (eds) Fractals and Disordered Systems (Springer, New York, 1996). 
Chan H.K. and Chan F.T.S. 2010. “Comparative study of adaptability and flexibility in distributed 

manufacturing.” Decision Support Systems 48(2): 331-341. 
Cassens, I., Mardulyn, P., Milinkovitch m. C. 2005. “Evaluating Intraspecific “Network” Construction 

Methods Using Simulated Sequence Data: Do Existing Algorithms Outperform the Global 
Maximum Parsimony Approach?” Systematic Biology 54(3), 363-372. 

Delic M. and Eyers D. 2020. “The effect of additive manufacturing adoption on supply chain flexibility, 
and performance: An empirical analysis from the automotive industry.” International Journal of 
Production Economics, 228: 107689. 

Denton T. and Jaska P. 2014. “Managing the medical device segment of the healthcare supply chain.” 
International Journal of Business and Public Administration 11(2), 41-47. 

Fierro L. H., Cano R. E., Garcia J. I. 2020. “Modelling of a multi-agent supply chain management system 
using Colored Petri Nets.” Procedia Manufacturing 42: 288-295. 

De Smet, R. and Marchal, K. 2010. “Advantages and limitations of current network inference methods.” 
Nature Reviews Microbiology 8, 717–729. 

Dolgui, A., Ivanov, D., Sokolov, B. 2020. Reconfigurable supply chain: The X-Network. International 
Journal of Production Research. 58(13), 4138-4163. 

Erdős P. and Rényi A 1959. “On random graphs I.” Publ. Math. Debrecen 6: 290–297. 
Grida, M., Mohamed R., and Zaied A.N.H. 2020. Evaluate the impact of COVID-19 prevention policies on 

supply chain aspects under uncertainty. Transportation Research Interdisciplinary Perspectives 8: 
1-8. 

Guo, H. Yu S.S., Iu H.H.C., Fernando T. and Zheng C. 2019. “A complex network theory analytical 
approach to power system cascading failure—From a cyber-physical perspective.” Chaos: An 
Interdisciplinary Journal of Nonlinear Science, 29(5): 053111. 

Haque H., Paul S.K., Sarker R. and Essam D. 2020. “Managing decentralized supply chain using bilevel 
with Nash game approach.” Journal of Cleaner Production, 266(1): 121865. 

Hernandez J.M., and Pedroza-Gutierrez C. 2019. “Estimating the influence of the network topology on 
the agility of food supply chains.” PLoS One, 14: 1-21. 

Ismail H.S. and Sharifi H. 2006. “A balanced approach to building agile supply chains.” International 
Journal of Physical Distribution & Logistics Management 36(6): 431-444. 

Jha S. 2019. “Trends in medical devices distribution: 2019 and beyond.” Biospectrum, December 2019, 
22-23. 

Ivanov, D. 2021. Exiting the COVID-19 pandemic: after-shock risks and avoidance of disruption tails in 
supply chains, Annals of Operations Research, https://doi.org/10.1007/s10479-021-04047-7 . 

Ivanov D., and Dolgui A. 2020. “Viability of Intertwined Supply Networks: Extending the Supply Chain 
Resilience Angles towards Survivability. A Position Paper Motivated by COVID-19 Outbreak.” 
International Journal of Production Research, 58(10): 2904-2915. 

Ivanov D., and Dolgui A. 2021. “OR-methods for coping with the ripple effect in supply chains during 
COVID-19 pandemic: Managerial insights and research implications.” International Journal of 
Production Economics 232, pp. 107921. 



Kumar D. and Rahman Z. 2017. “Analyzing enablers of sustainable supply chain: ISM and fuzzy AHP 
approach.” Journal of Modelling in Management 12(3): 498-524. 

Lavassani, K.M. 2017. “Coopetition and sustainable competitiveness in business ecosystem: a networks 
analysis of the global telecommunications industry.” Transnational Corporate Review 9(4): 281-
308. 

Lee E, Emmons S, Gibson R, Moody J, Mucha PJ. 2019. “Concurrency and reachability in treelike 
temporal networks.” Phys Rev E. 100(6-1): 062305. doi: 10.1103/PhysRevE.100.062305. PMID: 
31962508; PMCID: PMC6989038 

Li, W., Wang, Han, Y., Wang P. and Guan H. 2019. “Invulnerability Analysis of Traffic Network in Tourist 
Attraction Under Unexpected Emergency Events Based on Cascading Failure.” IEEE Access, 7, pp. 
147383-147398. 

Liu, J.-G., Wang, Z.-T., Dang, Y.-Z. 2005. “Optimization of robustness of scale-free network to random 
and targeted attacks.” Modern Physics Letters B 19(16): 785–792. 

Maltz, A. and Maltz, E. 1998. “Customer service in the distributor channel empirical findings.” Journal of 
Business Logistics 19(2): 103-129. 

Magnien, C., Latapy, M., Guillaume, J.L. 2011. “Impact of random failures and attacks on poisson and 
power-law random networks.” ACM Computing Surveys (CSUR) 43(3): 1-67. 

Mourtzis D., Doukas M. 2013. “Decentralized Manufacturing Systems Review: Challenges and Outlook.” 
In: Windt K. (eds) Robust Manufacturing Control. Lecture Notes in Production Engineering. 
Springer, Berlin, Heidelberg. 

NASEM (National Academies of Sciences, Engineering, and Medicine); Health and Medicine Division; 
Board on Health Sciences Policy.” “Impact of the Global Medical Supply Chain on SNS Operations 
and Communications.” Workshop Proceedings. Washington (D.C.): National Academies Press 
(U.S.); 2018 Jul 18.  s. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525656/ 

Okeagu C.N., Reed, D.S., Sun, L., Colontonio, M.M., Rezayev, A., Ghaffar Y.A., Kaye R.J., Cornett E.M., 
Fox, C.J., Urman, R.D., Kaye A.D. 2021. “Principles of supply chain management in the time of 
crisis.” Best Practice & Research Clinical Anesthesiology xxx(x): xx-xx. 
https://doi.org/10.1016/j.bpa.2020.11.007 

Peck H. 2003. “Creating Resilient Supply Chains: A Practical Guide.” Cranfield University, Center for 
Logistics and Supply Chain Management, [Last accessed 12/9/2020 URL: 
http://www.cranfield.ac.uk/som/scr] 

Potts, M.W., Sartor P.A., Johnson A., and Bullock S. 2020. “A network perspective on assessing system 
architectures: Robustness to cascading failure.” Systems Engineering 23(5): 597- 616. 

Rampfl, S. 2013. Seminars FI / IITM / ACN SS2013, Network Architectures and Services, August 2013. 
Rapisardi G., Caldarelli G., Cimini G. 2019. Numerical Assessment of the Percolation Threshold Using 

Complement Networks. In: Aiello L., Cherifi C., Cherifi H., Lambiotte R., Lió P., Rocha L. (eds) 
Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in 
Computational Intelligence, vol. 812. Springer, Cham. https://doi.org/10.1007/978-3-030-05411-
3_65 

Sauer P.C. and Seuring S. 2019. “Extending the reach of multi-tier sustainable supply chain management 
– Insights from mineral supply chains.” International Journal of Production Economics 217: 31-
43. 

Scott, L.R. 2011. Numerical Analysis. Princeton University Press. 
SEC Reporting, Release No. 33-7620, (Jan. 5, 1999), URL: https://www.sec.gov/rules/final/33-7620.txt 

[Last accessed 12/13/2020] 
Shekarian M., Nooraie S.V.R., Parast M.M. 2020. “An examination of the impact of flexibility and agility 

on mitigating supply.” International Journal of Production Economics 220: 1-16. 



Shi H., Yue Y., Zhou Y. 2019. “The Comparison Between Two Different Algorithms of Spatio-Temporal 
Forecasting for Traffic Flow Prediction.” In: Geertman S., Zhan Q., Allan A., Pettit C. (eds) 
Computational Urban Planning and Management for Smart Cities. CUPUM 2019. Lecture Notes 
in Geoinformation and Cartography. Springer, Cham. 

Sičanica, Z. and Vujaklija, I. 2020. “Resilience to cascading failures. a complex network approach for 
analysing the Croatian power grid.” 43rd International Convention on Information, 
Communication and Electronic Technology (MIPRO), Opatija, Croatia, 2020; 918-922, doi: 
10.23919/MIPRO48935.2020.9245160. 

Stellinger A., Berglund I. and Isakson H. 2020. “How trade can fight the pandemic and contribute to 
global health.”, in (eds.) Baldwin R. E. and Evenett S. J. (2020). COVID-19 and Trade Policy: Why 
Turning Inward Won’t Work, CEPR Press, London, UK.  

Sun, J., Tang, J., Fu, W., Chen, Z. and Niu Y. 2020. “Construction of a multi-echelon supply chain complex 
network evolution model and robustness analysis of cascading failure.” Computers & Industrial 
Engineering, 144: 1-16. 

Trajanovski, S., Scellato S., Leontiadis I. 2012. “Error and attack vulnerability of temporal networks.” 
PHYSICAL REVIEW E Stat Nonlinear, Soft Matter Phys, 85(6):1-10. 

Wang S., Hong L., Ouyang M., Zhang J. Chen X. 2013. “Vulnerability analysis of interdependent 
infrastructure systems under edge attack strategies.” Safety Science 51(1): 328-337. 

Wang, H., Gu, T., Jin, M., Zhao R. and Wang G. 2018. “The complexity measurement and evolution 
analysis of supply chain network under disruption risks.” Chaos, Solitons and Fractals 116(1): 72-
78. 

Williams M.J. and Musolesi M. 2016. “Spatio-temporal networks: reachability, centrality and 
robustness.” Royal Society Open Science 3(6), 160196.  

Wu, T., Blackhurst J., O’Grady P. 2007. “Methodology for supply chain disruption analysis.” International 
Journal of Production Research 45(7): 1665-1682. 

Yacoub, R. and El-Zomor, M. 2020. “Would COVID-19 Be the Turning Point in History for the 
Globalization Era? The Short-Term and Long-Term Impact of COVID-19 on Globalization” (April 6, 
2020. Available at SSRN: https://ssrn.com/abstract=3570142 or 
http://dx.doi.org/10.2139/ssrn.3570142 

Yan, J., He, H. and Sun, Y. 2014. “Integrated Security Analysis on Cascading Failure in Complex 
Networks.” IEEE Transactions on Information Forensics and Security 9(3): 451-463. 

Yamashita, K., Yasuda Y., Nakamura R. and Ohsaki, H. 2019. “Revisiting the Robustness of Complex 
Networks against Random Node Removal.” Journal of Information Processing 27: 643-649. 

Yang Q., Scoglio C.M. and Gruenbacher D. M. 2020. “Robustness of supply chain networks against 
underload cascading failures.” Physica A Statistical Mechanics and its Applications 563(C): 1-12. 

Zegordi S.H. and Davarzani H. 2012. “Developing a supply chain disruption analysis model: Application of 
colored Petri-nets.” Expert Systems with Applications 39(2): 2102-2111. 

K. Zheng, Y. Liu, Y. Wang, and W. Wang 2021. “k-core percolation on interdependent and 
interconnected multiplex networks.” 2021 EPL 133 48003. arXiv:2101.02335 

 
 
 
 
 
 
 
 
 



 
 
Appendix 1 
Supply Chain (SC) Ability Facets: Managing Disruptions 
 

Supply Chain 
Abilities 

Meaning Aim Source 

Resiliency 
SC’s ability to “to recover their performance after having 
absorbed the disruption effects” and “return to its original 
[or desired] state after being disturbed.” 

Recovery 
Baz and Ruel 
(2021); Peck (2003) 

Robustness “S.C.s’ ability to maintain its planned performance 
following…disruption(s).” 

Maintain operation 
Baz and Ruel (2021) 

Agility 
SC’s ability to “rapidly align the network and its operations 
to the dynamic and turbulent requirements of the demand 
network” and “shifts in supply”. 

Rapid response 
Ismail and Sharifi 
(2006); Kitchen and 
Hult (2007) 

Vulnerability 
SC’s “exposure to serious disturbance, arising from risks 
within the supply chain as well as risks external to the 
supply chain.” 

Measure of risk 
Peck (2003) 

Flexibility 
SC’s ability “to respond to changes in the volatile 
environment, without excessive performance loses.” 

Manage minor, 
short-term 
disruption 

Delic and Eyers 
(2020). 

Adaptability 

SC’s ability to “reshape” and “adapt to [an] uncertain 
environment in order to reduce any adverse 
impacts...without ties or legacy issues or regard to how the 
chain has been operated previously.” 

Manage major, 
long-term 
disruption 

Chan and Chan 
(2010); Kitchen and 
Hult (2007) 

 
 
 
Appendix 2.  
Firms' distribution across tiers 
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